Nucleic Acid Bases
Adenine, cytosine, guanine, thymine, and uracil are the four main nucleic acid bases for RNA. Typically, a purine and a pyrimidine form a hydrogen bond as part of the base pair. In DNA, guanine pairs with cytosine, adenine with thymine, and uracil is substituted for thiamine.
The horizontal rods represent the pairs of bases binding the two phosphate-sugar chains together securely, while the two ribbons stand for the two phosphate-sugar chains. The fibre axis is indicated by the vertical line. The 5′ end of one strand is coupled with the 3′ end of its corresponding strand because the two strands of the helix run in the opposite directions.
Crystallography using X-rays
The triple helix
Related Conference of Nucleic Acid Bases
17th International Conference on Tissue Science and Regenerative Medicine
Nucleic Acid Bases Conference Speakers
Recommended Sessions
- A New Approach to Determining the Nucleic Acid Sequence
- Function of Nucleic Acid
- Types of RNA
- Artificial Nucleic Acid
- DNA Damage and Repair
- Effect of Nucleic Acid on Protein Synthesis
- Enzymes for Nucleic Acids
- Infectious Disease
- Molecular Biology
- Molecular Structure of Nucleic Acid
- Nucleic Acid as a Genetic Material
- Nucleic Acid Bases
- Nucleic Acid Probes
- Nucleic Acid Recognition
- Peptide Nucleic Acid as Therapeutic Agent
- Recombinant DNA Technology
- RNA Processing and Protein Synthesis
- Thermodynamics of Nucleic Acids
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- 3D Structure Determination - Structural Biology-2025 (France)
- Advanced Techniques in Structural Biology - Structural Biology-2025 (France)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- AI & Computational Structural Biology - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology-2025 (France)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology-2025 (France)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene Regulation and Cell Signaling - Structural Biology 2025 (Germany)
- Hybrid Approaches for Structure Prediction - Structural Biology-2025 (France)
- Hybrid Approaches in Structure Prediction - Structural Biology 2025 (Germany)
- Membrane Proteins and Receptors - Structural Biology-2025 (France)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular Biology Techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology-2025 (France)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology-2025 (France)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Bioinformatics and Computational Biology - Structural Biology-2025 (France)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology-2025 (France)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Structural Virology - Structural Biology-2025 (France)
- Structural Virology and Infectious Diseases - Structural Biology-2025 (France)
- Structure-Based Drug Discovery - Structural Biology-2025 (France)
- Structure-Based Solutions to Global Health Challenges - Structural Biology-2025 (France)
- Structure-Function Relationships - Structural Biology-2025 (France)
- The Structural Basis of Disease - Structural Biology-2025 (France)